双子叶植物花的结构

  • 双子叶植物根的初生结构,次生结构怎样

      初生结构由外向内、根毛、表皮、皮层、内皮层、中柱鞘、初生韧皮部、薄壁细胞、初生木质部、少数植物有髓   次生机构由外向内、周皮(木栓层、栓形成层、木栓内层)、初生韧皮部、次生韧皮部、维管形成层、次生木质部、初生木质部、维管射线

  • 双子叶植物和单子叶植物在叶的结构上有哪些不同

      单、双子叶植物是从种子萌芽时长出的子叶数来区分的。叶片结构不同:单子叶植物叶脉是平行脉,双子叶是网状脉。这是最明显的区别。其它方面,种子结构也不同。双子叶由于有两片子叶,在种子形成初期,胚乳中的养分会被子叶吸收,所以在成熟的种子中是没有胚乳的。单子叶植物的种子有胚乳。希望对楼主有所帮助啦

  • 双子叶植物木质茎的次生结构由哪些构成

      大多数双子叶植物的茎,在初生生长的基础上还会出现次生分生组织——维管形成层和木栓形成层,通过它们的活动,进行次生增粗生长,其次生生长的过程和特点如下: 1、维管形成层的发生和活动 1)维管形成层的发生 原形成层发育为初生组织时,在初生韧皮部和初生木质部之间保留着一层具有分生能力的组织,即为形成层。由于这部分形成层是在维管束范围之内,因而又称束中形成层。当次生生长开始时,连接束中形成层那部分的髓射线细胞,恢复分裂性能,变为束间形成层。最后,束中形成层和束间形成层连成一环,它们共同构成维管形成层。维管形成层形成后,随即开始分裂活动,进行次生生长而形成次生结构。 双子叶植物茎的维管束中,当初生结构形成后,在初生韧皮部与初生木质部之间,还保留一层分生组织细胞,这是继续进行次生生长的基础。 草本双子叶植物幼茎横切面上,维管束呈椭圆形,各维管束之间距离较大,它们环形排列于皮层内侧;多数木本植物幼茎内的维管束,彼此间距很小,几乎连成完整的环。在立体结构中,各维管束是彼此交织贯连的。 2)维管形成层的活动 维管形成层开始活动时,主要是纺锤状原始细胞进行切向分裂(平周分裂),向外产生次生韧皮部,加在原有初生韧皮部内方;向内产生次生木质部,加在原有初生木质部的外方,构成轴向的次生维管系统。纺锤状原始细胞也可进行径向分裂、倾斜的垂周分裂,增加维管形成层环细胞的数目,使环径扩大。同时射线原始细胞也进行径向分裂,从而扩大维管形成层环的周径。射线原始细胞切向分裂的结果,形成径向排列的次生薄壁组织系统,即径向射线系统,其中位于次生韧皮部中的称为韧皮射线,位于次生木质部中的称为木射线。在这个过程中,纺锤状原始细胞也可垂周分裂,经过侧裂和横裂衍生出新的射线原始细胞。 一年生植物如苜宿﹑大理花﹑咸丰草等茎内的维管束排列成环状;多年生植物如扶桑﹑相思树等在木质部和韧皮部中间,有明显形成层,形成层的细胞可以不断分裂,向外产生新的韧皮部,向内产生新的木质部,所以茎会不断加粗。 2、木栓形成层的发生与活动 随着维管形成层不断分裂活动,茎的直径不断增粗,原有初生保护组织--表皮,不适应增粗需要,这时茎产生木栓形成层,进而产生另一新的次生保护结构--周皮,新的保护组织就是由木栓形成层所产生的。 茎中的木栓形成层在不同植物中,可有不同的来源。有的最初可以起源于表皮(如苹果、梨);有的由近表皮的皮层薄壁组织(如马铃薯、桃)或厚角组织(如花生、大豆)发生;有的也可在皮层较深处的薄壁组织(如棉花)中,甚至在初生韧皮部中发生(如茶属)。 周皮:木栓形成层形成后,向外产生木栓层;向内产生栓内层,加上其本身,三者合成周皮。大多数植物茎中,木栓形成层的活动是有限的,通常生存几个月就失去活力,以后木栓形成层每年重新发生,在第一次周皮的内方产生新的木栓形成层,再形成新的周皮,这样,木栓形成层的位置则渐向内移。在老茎中,木栓形成层可以直至次生韧皮部中发生。新形成的木栓层阻断了其外围组织与茎内部组织之间的联系,使外围的组织不能得到水分和养料的供应而死亡。这些失去生命的组织,包括多次的周皮,总称树皮。周皮形成过程中,在原来气孔位置下面的木栓形成层不形成木栓细胞,而产生一团圆球形,排列疏松的薄壁细胞,称为补充细胞。由于补充细胞增多,向外膨大突出,使周皮形成裂口,因而在枝条的外表产生一些浅褐色的小突起,这些突起称为皮孔。 次生韧皮部:次生韧皮部位于周皮以内,由筛管、伴胞、韧皮薄壁细胞和韧皮纤维组成。由于维管形成层向外产生的细胞少。因此,次生韧皮部比次生木质部要少。随着次生韧皮部的不断产生,初生韧皮部和先期产生的次生韧皮部中的一些筛管和薄壁细胞被挤毁,同时部分衰老的筛管分子由于筛板上形成胼胝体堵塞筛孔,失去输导作用。次生韧皮部筛管输导作用的时间较短,通常只有1-2年。韧皮射线位于次生韧皮部内,由射线原始细胞产生的薄壁细胞组成,有横向运输的作用。 次生木质部:次生木质部位于维管形成层以内,由导管、管胞、木薄壁细胞和木纤维组成,是茎输导水分的主要结构。 3、双子叶植物木质茎的次生构造:木质部细胞生长受气候影响而不同,春夏生长季节初期,气候温暖﹑雨量丰富,细胞生长快速,所以细胞较大﹑颜色较浅;秋冬季节,气温下降﹑雨量减少,细胞生长缓慢,所以细胞较小﹑颜色较深。由於木质部细胞的大小及颜色不同,在树干或树枝横切面上,会呈现深浅不同的环纹,称为年轮。根据年轮,可以推算树木或树枝的年龄。 树木逐年生长后,形层层内侧累积大量的木质部,即为俗称的木材;形成层以外的部俗称树皮,韧皮部即包含在树皮内。 心材与边材:多年生木本植物随着年轮的增多,在树干的横切面上可以看见木材的边缘部分和中央部分有所不同,靠近树皮部分的木材是近几年形成的次生木质部,颜色较浅,只有活的木薄壁组织,有效地担负输导和贮藏的功能,称为边材。靠近中央部分的木材,是较老的次生木质部,丧失了输导和贮藏的功能,这部分细胞颜色一般较深,养料和氧气进入都比较困难,引起生活细胞的衰老和死亡,称为心材。 木材三切面:木射线位于次生木质部内,常与韧皮射线相连,也是射线原始细胞产生的横向薄壁组织运输系统。在横切面上可见射线的长和宽;在径切面上能见到射线的宽和高;在弦切面上可看到射线的长和高。

  • 花生是单子叶植物,还是双子叶植物?

      是双子叶植物,将花生掰成2瓣后其中有一瓣上面会有小小的2片叶子

  • 双子叶植物叶片的结构是怎样的?要求简短一些

      一般来说,双子叶植物叶片扁平,形成较大的光合面积。由于上下两面受光不同,内部结构也不同。   叶片内部结构分为表皮、叶肉和叶脉。   表皮细胞多为有波纹边缘的不规则扁平体,细胞彼此紧密嵌合,没有间隙。在横切面上,表皮细胞形状十分规则,外切向壁较厚,并覆盖有角质膜,且一般上表皮较下表皮为发达,旱生较水生为发达。其作用在于减少蒸腾并阻止病菌异物入侵,且其较强的折光性能避免植物为强光所灼伤,有的植物叶表面还有蜡质。   双子叶植物的气孔结构为两个肾性保卫细胞,对于植物与环境间的气体交换,水分流动有重要作用。   有的植物叶表面有毛状体,能打大大减少水盆流失与阻挡昆虫。   不同环境下的叶片形状也会有所不同,如胡杨甚至在同一株上的叶片也不同。   栅栏组织(有利于光合过程中的气体交换)、海绵组织(气体交换和蒸腾作用)。   双子叶植物叶脉一般为网状,叶脉内的维管束和机械组织可以保证光合产物有效的运输到筛管分子中

  • 南瓜是单子叶植物,还是双子叶植物?

      双子叶植物。   其种子由两瓣组成。如花生,大豆。   相比而言,小麦,玉米则是单子叶。

  • 单子叶植物和双子叶植物根的初生结构有什么区别?

      双子叶植物直根系,单子叶植物须根系   双子叶植物和单子叶植物的基本区别   被子植物是植物界进化最高级、种类最多、适应性最强的类群。全世界约有20―25万种,超过植物界总种数的一半。我国被子植物种类繁多,据不完全统计,约近3万种。被子植物通常分为双子叶植物和单子叶植物两个主要类群。根据粗略的估计,已描述的双子叶植物大约有165000种,单子叶植物55000种。在中学植物学教材中曾多次讲到双子叶植物和单子叶植物。所谓双子叶植物就是种子具有两片子叶的植物;单子叶植物就是种子具有一片子叶的植物。除此之外,双子叶植物和单子叶植物还有哪些基本区别呢?   在自然界,我们可以根据叶片的脉序、根系的类型和花的形态特征来区别这两类植物。一般来说象苹果树、杨树、榆树、洋槐、棉花、向日葵等双子叶植物,它们的叶片具有网状脉序;而小麦、水稻、竹子、鸢尾等单子叶植物的叶片为平行脉序或弧形脉序,这种特征用肉眼即可观察,若把叶片对着阳光来看,可以观察得更清楚。在根的形态上,双子叶植物一般主根发达,故多为直根系,如棉花、月见草、榆树等;而单子叶植物一般主根不发达,由多数不定根形成须根系,如小麦、葱、水稻等。双子叶植物的花基数通常为5或4,花萼和花冠的形态也多不相同,如苹果花、油菜花等;而单子叶植物的花基数通常为3,且花萼和花冠非常相似,不易区分,如百合花、萱草花等。   如果在实验室内作进一步观察,可借助于解剖镜和显微镜来区分双子叶植物和单子叶植物在解剖结构上的区别。双子叶植物的支脉末梢是不封闭的,故有自由支脉末梢;而单子叶植物的支脉末梢是封闭的,故无自由支脉末梢。双子叶植物种子的胚通常有两片子叶,如大豆、花生、南瓜等;而单子叶植物种子的胚仅有一片子叶,如水稻、洋葱、玉米等。双子叶植物茎中的维管束成环状排列,即排列成圈,且有形成层,能够产生次生木质部和次生韧皮部,属无限维管束(开放维管束),因此双子叶植物的茎能不断增粗;而单子叶植物茎中的维管束是散生的,不排列成圈。若排列成圈,则排列成两圈或两圈以上,且无形成层,故不能产生次生木质部和次生韧皮部,属有限维管束(封闭维管束),因此单子叶植物的茎不能任意增粗。双子叶植物叶片上的气孔,排列的不规则,多为散生,如天竺葵、棉花等;单子叶植物叶片上的气孔,排列的比较规则,多排列成行,如玉米等。双子叶植物的花粉,多具3个萌发孔,如油菜等;单子叶植物的花粉,多具单个萌发孔,如玉米。为方便读者现列表比较(见下表):   以上是双子叶植物和单子叶植物在形态结构上的基本区别,也是它们的典型特征,据此可以将二者区别开来。但是这些特征并不是绝对的、固定的和一成不变的。特殊的例子还是有的。如双子叶植物中可以作中药用的柴胡,它的叶片就具有平行脉序;而单子叶植物中的山药的叶片就具有网状脉序。在子叶的数目上也有例外,如双子叶植物的睡莲、白屈菜种子的胚具一片子叶;而单子叶植物的天南星科海芋属等种子的胚具两片子叶。花基数的例外更多,如双子叶植物中的樟科、木兰科等有3基数的花;而单子叶植物眼子菜等有4基数的花。其他的例外也不少,如双子叶植物毛茛科、车前科有须根系;双子叶植物毛茛科、石竹科中有星散维管束等等。   由此可以看出双子叶植物和单子叶植物有许多基本区别,但它们之间的关系还是很密切的。从进化的角度来看,单子叶植物的须根系、缺乏形成层和平行脉序等性状,都是次生的,它的单萌发孔的花粉,却保留了比大多数双子叶植物还要原始的特点。在原始的双子叶植物中,也有单萌发孔的花粉,故有人断定单子叶植物是由双子叶植物进化来的,双子叶植物是单子叶植物的祖先。

  • 双子叶植物与禾木科植物叶片结构的主要区别

      1、种子结构:双子叶植物种子有两片子叶,营养物质储存在子叶中,无胚乳;禾木科植物种子有一片子叶,有胚乳,营养物质储存在胚乳中。   2、叶片结构:双子叶植物叶脉是大多数网状脉;叶脉是大多数平行脉。   3、根系结构:双子叶植物根系是直根系;禾木科植物根系是须根系;

  • 双子叶植物根的结构是有凯氏带还是凯氏点?

      凯氏带只有根具有;多数草本维管束不规则排列,有次生生长的一般都是维管束排列成一轮或多轮。 蚕豆的根的结构是带状加厚——凯氏带,在根的横切面上可见常被染成红色的凯氏点(或凯氏带)。 凯氏带是高等植物内皮层细胞径向壁和横向壁的木栓化和木质化的带状增厚部分,主要功能是阻止水份向组织渗透,控制着皮层和维管柱之间的物质运输。凯氏带是木质和栓质沉积在初生壁和胞间层中,并与质膜结合紧密的一条环带,质壁分离的细胞中,质膜紧贴着凯氏带区,只有这个区以外的质膜才分离开。最初由德国植物学家凯斯伯里于1865年发现,其名字的由来即在于此。凯氏带见于初生根的内皮层,而在茎、叶等气生器官中是否存在则仍有争议。

  • 火龙果是单子叶还是双子叶植物

      火龙果(学名:Hylocereus undatus 'Foo-Lon')是仙人掌科、量天尺属量天尺的栽培品种,攀援肉质灌木,具气根。分枝多数,延伸,叶片棱常翅状,边缘波状或圆齿状,深绿色至淡蓝绿色,骨质;花漏斗状,于夜间开放;鳞片卵状披针形至披针形,萼状花被片黄绿色,线形至线状披针形,瓣状花被片白色,长圆状倒披针形,花丝黄白色,花柱黄白色,浆果红色,长球形,果脐小,果肉白色、红色。种子倒卵形,黑色,种脐小。7-12月开花结果。   分布中美洲至南美洲北部,世界各地广泛栽培,藉气根攀援于树干、岩石或墙上,海拔3-300米。   该种分枝扦插容易成活,常作嫁接蟹爪属,仙人棒属和多种仙人球的砧木,花可作蔬菜,浆果可食,商品名“火龙果”。   *   中文名、火龙果   拼    音   *   Hylocereus undatus 'Foo-Lon'   *   学    名   *   红龙果、青龙果、仙蜜果、玉龙果   *   界   *   植物界   *   门   *   被子植物门   *   纲   *   双子叶植物纲   *   亚    纲   *   原始花被亚纲   *   目   *   仙人掌目   *   科   *   仙人掌科   *   属   *   量天尺属   *   种   *   量天尺   *   品    种   *   火龙果